Whitkirk Primary School - Calculation Procedure

Addition:

Key vocabulary: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' is the same as'

Starting at the larger number and counting on (augmentation) Suggested year group(s): R, Year 1		$12+5=17$ Start at the larger number on the number line or hundred square and count on in ones or in one jump to find the answer. A bar model which encourages the children to count on, rather than count all.	$5+12=17$ 'Place the largest number in your head and count on the smaller number to find your answer.' What is 5 more than 12? What is the sum of 12 and 5 ? What is the total of 5 and 12 ?
Regrouping to make 10 Suggested year group(s): Year 1 and Year 2	$6+5$ Start with the larger number and use the smaller number to make 10.	Children to draw the ten frame and counters/cubes.	$7+4=11$ 'If I am at seven, how many more do I need to make 10? How many more do l add on now?' Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5. Suggested year group(s): Year 1
Suggested year
group(s):
Rec, Year 1 , Year 2

Multiplication:

Key vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal groups, factor, product

\begin{tabular}{|c|c|c|c|}
\hline Objective and strategy \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Doubling \\
Suggested year group(s): Rec, Year 1
\end{tabular} \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 3 \(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square

\square
\end{tabular} \& Year 3 upwards: Partition a number and then double each part before recombining it back together.

\hline | Counting in multiples |
| :--- |
| Suggested year group(s): All year groups learning | \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,105,10,15,20,25$, 30

\hline
\end{tabular}

Repeated grouping/repeated addition Suggested year group(s): Year 2	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group	Thare are 3 plates. Each plate has 2 star biscuts on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Number lines to show repeated groups	3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
Arrays - showing commutativity Suggested year group(s): Year 1, Year 2, Year 3	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$ Factor x Factor $=$ Product

Division:

Key vocabulary: share, group, divide, divided by, half, dividend, divisor, quotient

